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The AXIMA Resonance

Introduction

The AXIMA Resonance is a versatile MALDI mass
spectrometer employed in a broad range of biological
and organic analytical applications. Its main advantages
are:

• True high-vacuum MALDI ion source

• Quadrupole ion trap with MSn capability for structural
elucidation

• High mass resolution and mass accuracy independent
of the number of cycles during MSn experiments

• Ability to isolate parent ions with isotopic resolution
over a wide mass range - up to 1000 FWHM

• Variable energy CID control during acquisition

• Outstanding sensitivity - uncompromised design, to
ensure highly efficient trapping functionality

• Low sample consumption - allowing many more MSn

experiments to be performed on the same spot

• Variable repetition rate N2 laser

• Manual or fully automated operation allowing the
seamless analysis of few or many samples as required

• Dedicated software solutions for a wide range of
applications

Given these advantages, the AXIMA Resonance is ideally
suited for high-end proteomics studies as well as less
conventional studies with polymers, lipids and small
molecules. The purpose of this document is to give an
insight into the use of the AXIMA Resonance in these
applications.
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Glycomics

Classical glycan and glycopeptide analysis using MS2 and MS3

AXIMA Resonance, an ideal solution for carbohydrate research

4 Glycomics

Glycosylation is one of the major post-translational modifications (PTM) and has significant effects on protein folding and

ultimately on protein activity. Identification of the glycan structure forms much of the challenge in this research field. However, of

equal importance is the determination of the point of attachment to the protein. The AXIMA Resonance offers the advantage of

being able to address both of these challenges.
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Figure 1: MS2 spectrum of a human transferrin glycopeptide [M+H-2Sia]+ (m/z 4139) that has already lost two
sialic acid moieties. The spectrum exhibits the fragmentation of the glycan part attached to the peptide.
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Figure 2: Positive ion MS3 spectrum of the product ion at m/z 2701 (from the MS2 analysis of m/z 4139 ion),
exhibiting fragmentation of the peptide backbone. The detection of specific fragments allowed the identification
of the glycosylation site.
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Figure 3: Positive ion MS3 spectrum of the product ion at m/z 1160, exhibiting fragmentation of the peptide
backbone. The peptide sequence is completely assigned.
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Biosimilars

Accurate Glycan Analyser, a one-stop platform for smarter carbohydrate research

Accurate Glycan Analyser is a software-directed multistage MALDI mass spectrometric approach using the unique MSn capability

offered by the AXIMA Resonance and a populated database of real MS and MSn glycan spectra, guiding the user through the

process of structural analysis of glycans without requiring an expert level of knowledge.

Unlike others, the Accurate Glycan Analyser database is populated with glycans of high biological relevance, that have been

enzymatically generated using the extensive glycogene know-how from the Japanese National Institute of Advanced Industrial

Science and Technology. This recombinant technology-based approach is unique in this field and provides the researcher with a

database of considerable added value.
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Figure 4: Overview of the Accurate Glycan Analyser - AXIMA
Resonance workflow applied to PA-labelled glycans released from
fetuin. At the MS level, potential glycan candidates are proposed.
The software then suggests MS2 precursor masses that can be
analysed to confirm the proposed glycan structure. In some cases
MS2 alone is not sufficient to unequivocally identify a single glycan
candidate, and thus the Accurate Glycan Analyser software
proposes further MSn precursor candidates (up to MS4). For the
fetuin example shown, MS3 was necessary to unambiguously
identify the glycan structure.
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Human Factor IX (FIX), a single-chain glycoprotein, plays an important role in the intrinsic blood coagulation pathway and is used

as a treatment for the bleeding disorder haemophilia B. There are two known glycosylation sites (Asn-157 and Asn-167).

The production of therapeutically active recombinant and plasma-derived FIX is approved and regulated by US and European

agencies. The current regulatory levels of quality control require meticulous characterisation of the glycosylation pattern. However,

due to the branched nature of glycans, the unambiguous identification of their structure is not trivial. The Accurate Glycan

Analyser - AXIMA Resonance platform facilitates this identification.

Figure 5: Summary of the identified glycan structures observed in
plasma-derived and recombinant FIX using the Accurate Glycan
Analyser software in combination with MSn analyses. Significant
differences were observed, in particular the extent of fucosylation
and the core structures of the identified glycans.
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Proteomics

Classical  Proteomics

AXIMA Resonance, designed with sequencing and structural characterisation in mind

Peptide mass fingerprint (PMF) and MS2 ion searching are widely used to enable high throughput protein identification. The

example shown here illustrates the suitability of the AXIMA Resonance for classical proteomics applications. The proteins retained

during a novel immunoadsorption therapy for rheumatoid arthritis (schematic 1) were studied in detail, combining 1D gel

electrophoresis, PMF and MS2 analysis.

Schematic 1: Treatment schematic of Staphylococcal Protein-A based
immunoadsorption therapy. The patient plasma is separated from the red
blood cells, passed through the immunoadsorption column, recombined
with the blood cells and returned to the patient. Immobilised Protein-A
binds immunoglobulins and attached proteins (antigens).

Patient 1 Patient 2

1

2
3

4
5

6

Figure 6: 1D SDS-PAGE of the proteins retained on column during immunoadsorption
treatment of rheumatoid arthritis patients 1 and 2. Marked bands were excised and
subjected to in-gel digestion with trypsin.
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Figure 7: PMF mass spectrum of the tryptic digest of gel band 4 (left) and MS2 analysis of m/z 1490 with individual Mascot MS2 Ion Search
(right) result.

Figure 8: Summary of Mascot Ion Search results for all selected gel bands analysed for each patient. Matches to apolipoprotein A1
(APOA1), apolipoprotein E (APOE) and histidine-rich glycoprotein (HRG) were identified. Lipoprotein A1 has been reported in the
literature to be present at an increased level in rheumatoid arthritis patients, however, little is understood of its biological role in
inflammatory disease or the biological and therapeutic significance of the partial removal of these proteins from the bloodstream of
rheumatoid arthritis sufferers.
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Microbial  Proteomics

Expanding rapid microbial identification through targeted proteomics

Mass spectrometric microbial identification is generally obtained using straightforward fingerprinting methods (eg: using the

Saramis software on the AXIMA IDplus platform). However, the investigation of differences at the fingerprint level using MS2

methods can provide more valuable and detailed information regarding the bacterial cells investigated.

The emergence of multi-drug resistant (MDR) enterobacteriaceae that can produce extended-spectrum beta-lactamases (ESBLs) is

currently a major worldwide concern. These enzymes confer resistance to a wide spectrum of beta-lactam antibiotics currently

used as first-line empirical therapy in the management of gram negative bacterial infections.

Significant differences in the microbial fingerprint were observed between ESBL- and non ESBL-producing E. coli. In particular, two

peaks at m/z 2341.3 and m/z 3790.0 dominated the fingerprint from ESBL-producing E. coli. These potential biomarkers were

selected for more in depth analysis by high resolution MS2.
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Figure 9: MS2 mass spectrum of m/z 2341.

Figure 10: MS2 mass spectrum of m/z 3790.

Figure 11: The MS2 data were searched using Mascot Ion Search
against all E. coli proteins in the NCBI database. Both peptides
matched with high confidence to the same protein: acid shock
protein precursor.
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Non-Enzymatic / Chemical Modifications

Thinking outside the box...
detecting protein modifications that are not in the database

Glycation is the non-enzymatic modification of a protein with a sugar molecule. Known as the Maillard reaction, it is the result of

the condensation between the reducing end of a sugar and the reactive amine group of a protein. Unlike the enzyme-controlled

glycosylation process, glycation is haphazard and tends to impair the function of the modified protein. Detailed characterisation of

glycation products is therefore of high importance in the physiology and pathology of human diseases such as the chronic vascular

complications of diabetes. It is also, however, relevant to the field of food processing.

In this study human serum albumin (HSA) glycation was investigated.
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Figure 15: HSA was incubated with glucose for three weeks, digested with trypsin and the PMF was compared to
that of unmodified HSA. Several differences between native and glycated HSA PMF were observed. These were
analysed with MS2, eg: MS2 of m/z 1181 (inset).
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Figure 16: Glycation is a labile modification
under UV MALDI conditions and in MS2

produces a distinctive neutral loss pattern
indicative of the modification (loss of 36,
120 and 162 Da from the precursor). Using
the PTMFinder software, the specific MS2

neutral loss signature for glucose was
screened against glycated HSA digestion
data. The screenshot illustrates the
PTMFinder results highlighting the neutral
losses on the spectrum.

Top-Down Proteomics 

Mapping intact proteins by combining In-Source Decay and MSn

In-Source Decay (ISD) is a widely accepted technique in the sequencing of whole proteins by mass spectrometry, commonly referred

to as top-down proteomics. Of particular importance is the characterisation of the protein N-terminus. Top-down sequencing using

the AXIMA Resonance is achieved by a novel approach combining ISD and pseudo MSn analyses in an ion trap. This has the

advantage of desorbing large proteins and maintaining high resolution on the selection and detection of fragment ions.
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Figure 12: AXIMA Resonance ISD spectrum
of HSA protein with its corresponding
sequences. HSA protein gave a regular
c-ion series from c7 to c33 and some b- and
a-ion series. Observed mass resolution was
greater than 11 500 FWHM for the c33 ion.

Figure 14: Pseudo MS4 of the b13-ion
(product ion of the c22-ion, m/z 1521.75).
Many species were identified: b8-b10, b12,
y4-y7 and y9-y11. Mass resolution was
similar to the pseudo MS3 spectrum.

Figure 13: Pseudo MS3 of the c22-ion
(m/z 2540.30). The two main species
correspond to b12 and b13 ions with
their neutral losses of NH3 and H2O.
Other species are annotated: b16, b17
and c21. The observed mass resolutions
for b13 ion, b13- NH3 and b13- H2O
exceeded 9 000 FWHM. The asterisks “*”
mark internal fragments.

ISD of human serum albumin provided a significant portion of the N-terminal sequence.

Pseudo MS3 and pseudo MS4 fully characterised the N-terminus of the protein.
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PTMFinder is Shimadzu proprietary software that uses data mining to investigate protein modifications, including hypothetical and

novel modifications. PTMFinder software offers the possibility of screening large MS2 datasets for specific peptide modifications.
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Post-Translational Modifications

MSn capability with high mass accuracy - 
an ideal alliance for post-translational modification analysis

Collagen is a highly abundant protein in mammals and constitutes the main protein within connective tissue, tendons, ligaments

and skin. Hydroxylation is a common post-translational modification of collagen formed through the reaction of proline amino acid

residues with prolyl hydroxylase. Alpha-1 type 1 collagen was investigated through enzymatic degradation and MSn mass

spectrometry. Several trypsin-digested peptides were found to contain multiple hydroxylation sites due to the prevalence of proline

residues. Mass spectrometric elucidation of the exact location of hydroxylation sites was performed using the AXIMA Resonance

mass spectrometer combining MS2 and MS3 for hydroxyproline (HyP) identification.
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Figure 17: As HyP and Leu/Ile are isobaric in nominal mass
(113.04768 and 113.08406 Da respectively), very high accuracy was
necessary in order to specifically determine HyP sites. The accuracy
of the AXIMA Resonance is sufficient to differentiate HyP from
Leu/Ile (0.03638 Da) as illustrated in the statistical graph of
multiple measurements of HyP (blue trace) and Leu/Ile (red trace)
within HyP-Bradykinin and LHRH peptide sequences respectively.
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Figure 18: MS2 spectrum of the proteolytic peptide GSPGADGPAGAPGTPGPQGIAGQR ((M+H)+ = 2393 Da) from ITRAQ modified collagen
alpha-1(I). The localisation of the HyP residue was demonstrated by a shift in the predicted y-ions (highlighted in yellow).

Figure 19: The dominant fragment ion at 1604 Da was selected for MS3 analysis and this confirmed the location of the HyP residue.
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Figure 20: Combination of the MS3 data for the fragment ions 980 Da (A) and 789 Da (B) with that of 1604 Da (Figure 19) provided the
complete amino acid sequence for this peptide.
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Figure 21: The MS2 data were interrogated
using PTMFinder software. Here
hydroxyproline was defined as a possible
modification of proline (ΔM = 15 Da) and
the MS2 of m/z 2393 was screened. A single
HyP modification was correctly identified
at amino acid position 12 out of the
possible 5 proline sites within the peptide.
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Small Molecules

MSn, maximising structural information for small molecules

Anthocyanins belong to the flavonoid group of polyphenolic compounds and have been investigated for multiple health benefits

related to their anti-oxidant nature.
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Figure 22: Basic structure of an anthocyanin. Many forms exist, the six most common core structures are shown in the table. The sugar
moiety varies between mono-, di- and tri-saccharide units with various phenolic acid ester groups.
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Figure 23: The MS spectrum of red radish extract contains a
complex mixture of anthocyanins.
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Figure 24: MS2 analysis of three of the radish anthocyanins (m/z 989 (A), m/z 1005 (B) and m/z 1019 (C)) indicates
that the fragmentation pathway mainly consists of the loss of the sugar moieties: loss of malonyl (86 Da), of
5-(malonyl) glucoside (248 Da), of the modified diglucosides at position 3, of both the modified diglucosides and
malonyl and finally complete loss of all the sugar moieties to form the Pg-aglycone.
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Figure 25: MS3 analysis of the Pg-aglycone fragment ion (m/z 271). Each of the peaks annotated with *
corresponds to a known fragment of the Pg-aglycone structure. Fragmentation proceeds through loss of
water (18 Da), loss of CO (28 Da) and loss of acetyl (42 Da).
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12 pelargonidin-3-(feruloyl) diglucoside-5-(malonyl) glucoside
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Polymers

Broadening horizons... 
compositional analysis of synthetic polymers

Fatty alcohol alkoxylates are used as non-ionic surfactants in home and industrial cleaning agents. Characterised by important

properties such as foam suppression, foam control and wetting effects, fatty alcohol alkoxylates are synthesised by reaction of

fatty alcohols with alkoxides such as ethylene oxide and propylene oxide amongst others. Alkoxylates are also relevant in a broad

range of chemical industrial applications where they are used as dispersal agents and emulsifiers.

MS and MS2 were used to characterise the fatty alcohol alkoxylate polymer shown in schematic 2.

O
O

n

H

Schematic 2: Structure of the fatty alcohol alkoxylate polymers analysed.
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Figure 26: AXIMA Resonance mass spectrum of the ethoxylated octanol. The peaks represent (M+Li)+ ions. The mass distribution in the
spectrum is asymmetric due to the low degree of ethoxylation in this product.
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Figure 27: A key advantage of the AXIMA Resonance system is the ability to control the relative collision energy which results in
high-quality CID-MS2 spectra. This is the MS2 spectrum of the lithium adduct precursor ion m/z 489 clearly showing the fragment series
[HO-(EO)n-H+Li]+ and [C8-O-(EO)n-H+Li]+ (C8 = C8H17 and EO= CH2CH2O).
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Schematic 3: A theory for the fragmentation of the ethoxylated fatty alcohols is based on
the rearrangement reaction in which the lithium ion is attached in a transition state to the
terminal oxygen. In the next step the elimination of ethylene takes place.
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Revolutionising lipid research with mono-isotopic precursor ion selection
and MSn capability

Lipids represent an important class of compound due to their broad range of vital biological functions. Mono-isotopic selection of

lipids during MS2 analysis is critical due to the natural occurrence of C-C bond unsaturation giving rise to ions that are separated

by 2 Da in the mass spectrum.
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Plasma lipid extracts in MALDI-TOFMS
exhibit mostly phospholipids and
triacylglycerols (triglycerides or TAG).
Depending on the experimental conditions
(matrix used, solvent, cations, etc) it is
possible to selectively ionise certain classes
of lipids individually from a mixture.
In this case, the chosen conditions allowed
for the detection of mainly the
phosphatidylcholine and TAG species.
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