ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы удельной поверхности Quantachrome

Назначение средства измерений

Анализаторы удельной поверхности Quantachrome (далее - анализаторы) предназначены для измерений удельной поверхности, удельного объема и диаметра пор порошкообразных веществ и материалов (катализаторов, адсорбентов, керамики и других пористых материалов) по аттестованным методикам измерений.

Описание средства измерений

Принцип действия анализаторов основан на явлении адсорбции молекул адсорбата (азота, криптона или аргона) активной поверхностью анализируемого образца из газовой фазы, в результате которой наблюдается изменение давления в ячейке с образцом. По изменению давления с момента начала заполнения и после наступления равновесия (при фиксированной температуре) определяется объем поглощенного (адсорбированного) газа. Затем давление увеличивают согласно заданной программе эксперимента и фиксируют следующее равновесное давление и соответствующее ему количество адсорбированного газа. На основании полученных значений строят изотерму адсорбции, которая представляет собой зависимость удельной адсорбции газа от относительного давления. На основании математической обработки данных изотерм адсорбции с применением различных теорий и моделей рассчитываются значения удельной поверхности (по методу БЭТ - Брунаэра-Эммета-Теллера или Лэнгмюра); удельный объем пор (по правилу Гурвича, по уравнению Дубинина-Радушкевича, Дубинина-Астахова и др.), распределение пор по размерам, а также преобладающие диаметры мезопор из адсорбционной и десорбционной ветвей изотермы (метод Баррета, Джойнера, Халенда, теория функционалов плотности), диаметр микропор (по методу Хорвата, Кавазое, Саито - Фолей).

Анализаторы представляют собой стационарные автоматизированные приборы, управляемые от встроенного микропроцессора. В состав анализаторов входят криостат, в который помещается ячейка с образцом, газовый распределительный коллектор, система измерения давления газа, вакуумный насос, две (и более) дегазационные станции (за исключением моделей Quadrasorb EVO) и блок электроники со встроенным микропроцессором и жидкокристаллическим дисплеем. Анализаторы выпускаются следующих моделей: NOVA (1000e, 2000e, 1200e, 2200e, 3000e, 3200e, 4000e, 4200e), NOVAtouch (NT-1, NT LX-1, NT2-1, NT 2LX-1, NT3-1, NT 3LX-1, NT4-1, NT 4LX-1); Autosorb iQ (iQ MP, iQ C, iQ C-XR, iQ MP-XR, iQ AG, iQ2 MP, iQ2 C, iQ2 C-XR, iQ2 MP-XR, iQ2 AG, iQ3 MP, iQ3 C, iQ3 C-XR, iQ3 MP-XR, iQ3 AG), Autosorb 6iSA, Quadrasorb evo (QDS-30, 3QDS-30, 2QDS-30, QDS-MP-30, 3QDS-MP-30, 2QDS-MP-30, QDS-MP-30-P), диапазонами показаний датчиков давления и количеством аналитических станций (более подробно представлено в таблице 1). Пломбирование анализаторов не предусмотрено.

Таблица 1 - Сведения о моделях анализаторов удельной поверхности Quantachrome

	,		•
		Количество	Диапазон показаний
Модель	Адсорбаты	аналитических	относительных
		станций	давлений Р/Ро
1	2	3	4
NOVA 1000e	N_2	1	10^{-3} -1
NOVA 1200e	N ₂ , Ar, CO ₂	1	10 ⁻³ -1
NOVA 2000e	N ₂	2	10 ⁻³ -1

Продолжение таблицы 1

продолжение гаолицы г	1	, , , , , , , , , , , , , , , , , , , ,	
1	2	3	4
NOVA 2200e	N_2 , Ar, CO_2	2	10 ⁻³ -1
NOVA 3000e	N_2	3	10 ⁻³ -1
NOVA 3200e	N_2 , Ar, CO_2	3	10 ⁻³ -1
NOVA 4000e	N_2	4	10^{-3} -1
NOVA4200e	N_2 , Ar, CO_2	4	10 ⁻³ -1
NOVAtouch NT-1	N_2	1	10 ⁻³ -1
NOVAtouch NT LX-1	N_2 , Ar, CO_2	1	10^{-3} -1
NOVAtouch NT2-1	N_2	2	10^{-3} -1
NOVAtouch NT 2LX-1	N_2 , Ar, CO_2	2	10^{-3} -1
NOVAtouch NT3-1	N_2	3	10 ⁻³ -1
NOVAtouch NT 3LX-1	N_2 , Ar, CO_2	3	10^{-3} -1
NOVAtouch NT4-1	N ₂	4	10^{-3} -1
NOVAtouch NT 4LX-1	N ₂ , Ar, CO ₂	4	10 ⁻³ -1
Quadrasorb evo 2QDS-30	N ₂ , Kr, CO ₂	2	10 ⁻³ -1
Quadrasorb evo 3QDS-30	N ₂ , Kr, CO ₂	3	10^{-3} -1
Quadrasorb evo QDS-30	N ₂ , Kr, CO ₂	4	10^{-3} -1
Quadrasorb evo QDS-30-P	N ₂ , Kr, CO ₂	4	10^{-3} -1
Quadrasorb evo 2QDS-			
MP-30	N_2 , Ar, $CO_2 + Kr$	2	10^{-5} -1
Quadrasorb evo 3QDS-			
MP-30	N_2 , Ar, $CO_2 + Kr$	3	10 ⁻⁵ -1
Quadrasorb evo QDS-MP-			
30	N_2 , Ar, $CO_2 + Kr$	4	10 ⁻⁵ -1
Quadrasorb evo QDS-MP-			
30-P	N_2 , Ar, $CO_2 + Kr$	4	10 ⁻⁵ -1
Autosorb iQ AG	N_2 , Ar, CO_2	1	10 ⁻³ -1
Autosorb iQ2 AG	N_2 , Ar, CO_2	2	10 ⁻³ -1
Autosorb iQ3 AG	N_2 , Ar, CO_2	3	10 ⁻³ -1
Autosorb iQ MP	N_2 , Ar, $CO_2 + Kr$	1	10 ⁻⁷ -1
Autosorb iQ MP-XR	N_2 , Ar , $CO_2 + Kr$	1	10 ⁻⁸ -1
Autosorb iQ2 MP	N_2 , Ar , $CO_2 + Kr$	2	10 ⁻⁷ -1
Autosorb iQ2 MP-XR	N_2 , Ar, $CO_2 + Kr$	2	10 ⁻⁸ -1
Autosorb iQ3 MP	N_2 , Ar, $CO_2 + Kr$	3	10 ⁻⁷ -1
Autosorb iQ3 MP-XR	N_2 , Ar, $CO_2 + Kr$	3	10 ⁻⁸ -1
	N_2 , Ar, $CO_2 + Kr +$		
	O_2 , H_2 и др. газы для		
Autosorb iQ C	хемосорбции	1	10^{-7} -1
	N ₂ , Ar, CO ₂ + Kr +		
	O_2 , H_2 и др. газы для		
Autosorb iQ C-XR	хемосорбции	1	10 ⁻⁸ -1
	N_2 , Ar, $CO_2 + Kr +$		
	O_2 , H_2 и др. газы для		
Autosorb iQ2 C	хемосорбции	2	10 ⁻⁷ -1

Продолжение таблицы 1

1	2	3	4
	N_2 , Ar, $CO_2 + Kr +$		
	O_2 , H_2 и др. газы для		
Autosorb iQ2 C-XR	хемосорбции	2	10^{-8} -1
	N_2 , Ar, $CO_2 + Kr +$		
	O_2 , H_2 и др. газы для		
Autosorb iQ3 C	хемосорбции	3	10^{-7} -1
	N_2 , Ar, $CO_2 + Kr +$		
	O_2 , H_2 и др. газы для		
Autosorb iQ3 C-XR	хемосорбции	3	10^{-8} -1
Autosorb-6iSA	N ₂ , Ar, CO ₂ и др.	6	10^{-3} -1

Для подготовки образцов к измерениям используется станция подготовки образцов (дегазации), включающая несколько портов подключения образцов, вакуумный насос, нагревательные жакеты, датчик температуры и блок электроники со встроенным микропроцессором для управления станцией. Станция дегазации может работать одновременно с измерительным блоком либо работать независимо от него.

Анализируемый образец перед проведением измерений помещают в порт предварительной подготовки и дегазируют при высокой температуре в вакууме. Конкретные значения условий дегазации приводятся в методиках измерений. В случае анализа стандартных образцов рекомендации по условиям дегазации приведены в сопроводительной документации на стандартный образец. После дегазации пробирку с образцом устанавливают на измерительный порт. В зависимости от заданной пользователем программы процесс измерения может протекать по-разному.

«Холодный» объем ячейки поддерживается постоянным при помощи автоматического постоянного поднятия вверх сосуда Дъюара, компенсируя, таким образом, испарение хладоагента (как правило, в качестве хладоагента применяется жидкий азот с температурой кипения 77,35 K). Ячейка с образцом первоначально вакуумируется, затем в нее из калиброванного объема системы начинают поэтапно подавать адсорбат (в качестве адсорбата могут быть использованы N_2 , Kr, Ar, CO_2 и др.). Анализ может быть проведен как в режиме с гелием, так и без него, с использованием предварительной калибровки ячейки.

Программное обеспечение, которым укомплектован анализатор, на основе полученных данных и физико-химических констант позволяет определить следующие характеристики дисперсных и пористых материалов: удельную поверхность, удельный объем и диаметр пор. Помимо представленных характеристик программное обеспечение позволяет проанализировать изотермы сравнительными методами, построить распределения пор по диаметрам и др.

Внешний вид анализаторов представлен на рисунке 1.

Д - модель Autosorb-6iSA

Рисунок 1 - Внешний вид анализаторов

Программное обеспечение

Анализаторы оснащены программным обеспечением, позволяющим проводить контроль процесса измерений, осуществлять сбор экспериментальных данных, обрабатывать и сохранять полученные результаты, передавать результаты измерений на персональный компьютер. Идентификационные данные программного обеспечения анализаторов приведены в таблице 2.

Таблица 2 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	NovaWin (для моделей NOVA)
	TouchWin (для моделей NOVAtouch)
	ASiQWin (для моделей Autosorb)
	QuadraWin (для моделей Quadrasorb)
Номер версии ПО (идентификационный номер ПО)	версии, не ниже
	V.8.0 (для моделей NOVA)
	V.1.1 (для моделей NOVAtouch)
	V.2.0 (для моделей Autosorb)
	V.3.0 (для моделей Quadrasorb)
Цифровой идентификатор ПО	9803BCFB (для моделей NOVA)
	2B884570 (для моделей NOVAtouch)
	83FBBEDE (для моделей Autosorb)
	78A68B7D (для моделей Quadrasorb)
Другие идентификационные	CRC32
данные (алгоритм вычисления цифрового	
идентификатора ПО)	

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «Высокий» по Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 3 - Метрологические и технические характеристики

Характеристика	Модель анализатора		
	NOVA	Autosorb-iQ (iQ MP,	Quadrasorb
	NOVAtouch	iQ C, iQ C-XR,	evo (QDS-MP-30,
	Quadrasorb evo	iQ MP-XR, iQ2 MP,	3QDS-MP-30,
	(QDS-30,	iQ2 C, iQ2 C-XR,	2QDS-MP-30,
	3QDS-30,	iQ2 MP-XR,	QDS-MP-30-P)
	2QDS-30,	iQ3 MP, iQ3 C,	
	QDS-30-P),	iQ3 C-XR,	
	Autosorb-iQ	iQ3 MP-XR)	
	(iQ AG, iQ2 AG,		
	iQ3 AG)		
	Autosorb-6iSA		
1	2	3	4
Диапазон измерений	от 0,1 до 2000,0	от 0,1 до 2000,0 (N ₂)	от 0,1 до 2000,0 (N ₂)
удельной поверхности,	(N_2)	от 0,1 до 10,0 (Кг)	от 0,1 до 2000,0 (112)
M^2/Γ	(112)	01 0,1 до 10,0 (Кі)	01 0,1 до 10,0 (11)
Диапазон показаний		от 0,01 до 2000,00	от 0,01 до 2000,00
удельной поверхности,	от 0,01 до	(N_2)	(N_2)
M^2/Γ	2000,00 (N ₂)	от 0,0005 до 10,0000	от 0,0005 до 10,0000
		(Kr)	(Kr)

1	2	3	4
Пределы допускаемой относительной погрешности измерений удельной поверхности, %	±5 (N ₂)	±5 (N ₂) ±10 (Kr)	±5 (N ₂) ±10 (Kr)
Диапазон показаний диаметра пор, нм	от 0,35 до 400,00	от 0,35 до 400,00	от 0,35 до 400,00
Диапазон измерений диаметра пор, нм	от 2 до 100 (N ₂)	от 0,4 до 100,0 (N ₂ , Ar)	от 0,4 до 100,0 (Аг)
Пределы допускаемой относительной погрешности измерений диаметра пор, %	±10 (N ₂)	±10 (N ₂ , Ar)	±10 (N ₂)
Диапазон показаний удельного объема пор, cm^3/Γ	от 0,0001 до 10,0000	от 5·10⁻8 до 10	от 0,0001 до 10,0000
Диапазон измерений удельного объема пор, cm^3/Γ	от 0,05 до 2,00 (N ₂)	от 0,05 до 2,00 (N ₂ , Ar)	от 0,05 до 2,00 (N ₂)
Пределы допускаемой относительной погрешности измерений удельного объема пор, %	±10 (N ₂)	±10 (N ₂ , Ar)	±10 (N ₂)
Диапазон показаний давлений, МПа (мм рт. ст.)	от 0 до 0,133 (от 0 до 1000)	от 0 до 0,133 (от 0 до 1000) от 0 до 1,33·10 ⁻³ (от 0 до 10) от 0 до 1,33·10 ⁻⁴ (от 0 до 1) от 0 до 0,0000133 (от 0 до 0,1) (для моделей Autosorb- iQ (iQ C-XR, iQ MP- XR, iQ2 C-XR, iQ2 MP-XR, iQ3 C-XR, iQ3 MP-XR)	от 0 до 0,133 (от 0 до 1000) от 0 до 1,33·10 ⁻³ (от 0 до 10)
Диапазон показаний температур дегазации, °C	комнатная - 350 (450 опционально)	комнатная - 350 (450 опционально)	комнатная - 350 (450 опционально)
Условия эксплуатации: - температура окружающего воздуха, °С - относительная влажность воздуха, %, не более	от +15 до +35 80		
Габаритные размеры (высота × ширина × глубина), см, не более	103,5 x 70,0 x 77,0	103,5 x 69,9 x 70,5	64 x 53 x 77

1	2	3	4
Вес, кг:			
- NOVA	37		
- NOVAtouch	43	140	57.5
- Quadrasorb evo	57,5	148	57,5
- Autosorb-AG	148		
- Autosorb-6B	172		
Параметры сети:			
- напряжение питания, В	220 ± 22	от 100 до 240	220±22
- частота тока, Гц	50/60	50/60	50/60
Средний срок службы, лет,		10	
не менее		10	

Примечание - в скобках указан адсорбат, при использовании которого обеспечивается соответствующий диапазон измерений.

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом и на лицевую панель прибора в виде наклейки.

Комплектность средства измерений

Комплектность средства измерений приведена в таблице 4.

Таблица 4 - Комплектность средства измерений

Наименование	Количество, шт.
Анализатор удельной поверхности модели Quantachrome	1
Запасные части (по отдельному заказу)	опция
Регулятор газовый	≥1
Компьютер (по отдельному заказу)	опция
Программное обеспечение	1
Руководство по эксплуатации анализатора	1
Методика поверки МП 43-251-2016	1
Руководство пользователя по программному обеспечению	1

Поверка

осуществляется по документу МП 43-251-2016 «ГСИ. Анализаторы удельной поверхности модели Quantachrome. Методика поверки», утвержденному Φ ГУП «УНИИМ» 28 июля 2016 г.

Основные средства поверки:

- стандартный образец сорбционных свойств нанопористого оксида алюминия (Al₂O₃ CO УНИИМ) ГСО 10449-2014 со следующими метрологическими характеристиками:
- интервал аттестованных значений удельной поверхности от 100 до 300 м 2 /г, границы относительной погрешности аттестованного значения ± 3.0 %;
- интервал аттестованных значений удельного объема пор от 0.2 до $1.0 \text{ см}^3/\text{г}$, границы допускаемых значений относительной погрешности аттестованного значения $\pm 3.0 \text{ %}$;
- интервал аттестованных значений среднего диаметра пор от 5 до 20 нм, границы допускаемых значений относительной погрешности аттестованного значения ± 3.0 %;
- интервал аттестованных значений удельной адсорбции азота при минус $196\,^{\circ}\mathrm{C}$ и равновесном давлении азота $P/P_o=0,10;~0,20;~0,30;~0,99$ в интервале от 1,5 до 25 моль/кг, границы допускаемых значений относительной погрешности аттестованных значений удельной адсорбции $\pm 3,0\,\%$)

- стандартный образец сорбционных свойств нанопористого цеолита (Zeolite CO УНИИМ) ГСО 10734-2015 со следующими метрологическими характеристиками:
- интервал аттестованных значений удельной поверхности от 500 до 1200 м 2 /г, границы относительной погрешности аттестованного значения $\pm 3,0$ %;
- интервал аттестованных значений удельного объема пор от 0.1 до 0.5 см 3 /г, границы допускаемых значений относительной погрешности аттестованного значения ± 3.0 %;
- интервал аттестованных значений преобладающего диаметра пор от 0.4 до 0.9 нм, границы допускаемых значений относительной погрешности аттестованного значения ± 3.0 %;
- интервал аттестованных значений удельной адсорбции азота при минус $196\,^{\circ}\text{C}$ и равновесном давлении азота в диапазоне относительных давлений P/P_{o} от $1.0\cdot10^{-6}$ до $1.0\cdot10^{-1}$ в интервале от 0.001 до 20 моль/кг, границы допускаемых значений относительной погрешности аттестованных значений удельной адсорбции азота $\pm 30.0\,$ % при P/P_{o} $(1.0\cdot10^{-6}-1.7\cdot10^{-4})$; $\pm 4.0\,$ при P/P_{o} $(1.7\cdot10^{-4}-1.0\cdot10^{-1})$ %);
- ГЭТ 210-2014 Государственный первичный эталон единиц удельной адсорбции газов, удельной поверхности, удельного объема и размера пор твердых веществ и материалов.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и на панель анализатора в соответствии с рисунком 1.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к анализаторам удельной поверхности Quantachrome

Техническая документация фирмы «Quantachrome Instruments».

Изготовитель

Фирма «Quantachrome Instruments», США LLC, 1900 Corporate Drive Boynton Beach, Florida 33426 USA.

Заявитель

Общество с ограниченной ответственностью «НКЦ ЛАБТЕСТ»

123557, г. Москва, Большой Тишинский пер., 38

E-mail: <u>info@lab-test.ru</u> Тел. (495) 605-35-07

Испытательный центр

ФГУП «Уральский научно-исследовательский институт метрологии» (ФГУП «УНИИМ»)

620000, г. Екатеринбург, ул. Красноармейская, 4

Тел. (343) 350-26-18, факс: (343) 350-20-39

E-mail: uniim@uniim.ru

Аттестат аккредитации ФГУП «УНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311373 от 10.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голуо	ев
------------	----

М.п.	« »	2016